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Special relativity, the symmetry breakdown in the electroweak standard model, and the
dichotomy of the spacetime related transformations with the Lorentz group, on the one
side, and the chargelike transformations with the hypercharge and isospin group, on
the other side, are discussed under the common concept of “relativity.” A relativity is
defined by classes G/H of “little” group in a “general” group of operations. Relativities
are representable as linear transformations that are considered for five physically
relevant examples.

KEY WORDS: operation group; induced representations; relativities; homogeneous
spaces.

1. FIVE RELATIVITIES FOR AN INTRODUCTION

Basic physical theories involve both external and internal degrees of freedom
that are acted on, respectively, by operations from the Poincaré group, i.e., Lorentz
group and spacetime translations, and by operations from the hypercharge, isospin
and color group. The properties of all basic interactions and particles are deter-
mined and characterized by invariants and eigenvalues for these operation groups.
Although the product of external and internal operations in the acting group is
direct, the internal “chargelike” operations are coupled to the external “spacetime-
like” ones: any spacetime translation is accompanied by a chargelike operation.
This is implemented by the gauge fields in the standard model of electroweak and
strong interactions. In the following, the dichotomy and the connection of exter-
nal and internal operations will be discussed under the label “unitary relativity,”
especially with respect to its representations by interactions and particles.

To see its general and its specific structures, unitary relativity will be in-
troduced and considered as one example in five relativities: perpendicular rela-
tivity as realized after discovering the surface of the earth to be spherical, ro-
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tation relativity, or space and time relativity, as used in what we call special
relativity with “timelike” and “spacelike” translations, Lorentz group relativity,
or Minkowski spacetime relativity, as an important ingredient of general rel-
ativity, electromagnetic relativity as formulated in the standard model of elec-
troweak interactions Weinberg (1967) and finally, and that is mostly new, unitary
relativity.

Relativity will be defined by operation groups, an example: In special rela-
tivity, the distinction of your rest system determines a decomposition of spacetime
translations into time and position translations. Compatible with this decompo-
sition is your position rotation group SO(3) as a subgroup of the orthochronous
Lorentz group SO0(1, 3). There are as many decompositions of spacetime into
time and position as there are rotation groups in a Lorentz group. The rotation
group classes are parametrizable by the points of a one shell 3-dimensional hyper-
boloid Y3 ∼= SO0(1, 3)/SO(3) that give the momenta (velocities) for all possible
motions. Another example: The perpendicularities of mankind, if earthbound, are
characterized by the axial rotation groups in a rotation group and parametrizable
by coordinates of the earth’s surface �2 ∼= SO(3)/SO(2).

Now in general: The choice of an “idolized” operation group H in a “gen-
eral” operation group G picks one element in the G-symmetric space G/H, which
stands for the relativity of the “idolized” group, called H -relativity. An “idoliza-
tion” Bacon (1994) goes, negatively, with the “narrow-minded” assumption of an
absolute point of view or, positively, with the distinction of a smaller operation
symmetry, enforced, e.g., by initial or boundary conditions. Important examples
are degenerate ground states (“spontaneous symmetry breakdown”) where an
“interaction-symmetry” G is reduced to a “particle-symmetry” H , e.g., the degen-
erate ground states of superconductivity, of superfluidity, of a ferromagnetic or of
the electroweak standard model. The ground state degeneracy is characterized by
the symmetric space G/H.

This gives the first four columns of the following table, which together with
the last one will be discussed with their representations in more detail below

relativity

“general”

group G(r, rR)

“idolized”

subgroup H

homogeneous

space G/H

relativity

parameters

axial rotation

(perpendicular)

relativity

SO(3)

∼SU(2)

(1, 0)

SO(2) 2-Sphere

�2 ∼= SO(3)/SO(2)
∼= SU(2)/SO(2)

2 Transversal

coordinates

Rotation

(special)

relativity

SO0(1, 3)

∼SL(C2)

(2, 1)

SO(3)

∼SU(2)

3-Hyperboloid

Y3 ∼= SO0(1, 3)/SO(3)
∼= SL(C2)/SU(2)

3 Momenta

Lorentz group

(general)

relativity

GL(R4)

(4, 4)

O(1, 3) tetrad or metric manifold

M10 ∼= GL(R4)/O(1, 3)
∼= D(1) × SO0(3, 3)/SO0(1, 3)

10 Components

for metric tensor
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relativity

“general”

group G(r, rR)

“idolized”

subgroup H

homogeneous

space G/H

relativity

parameters

Electro-

magnetic

relativity

U(2)

(2, 0)

U(1)+ Goldstone manifold

G3 ∼= U(2)/U(1)+
3 Weak

coordinates

Unitary

relativity

GL(C2)

(4, 2)

U(2) Positive 4-cone

D4 ∼= GL(C2)/U(2)
∼= D(1) × SO0(1, 3)/SO(3)

4 Spacetime

coordinates

orientation manifolds of five relativities

Somewhat in accordance with the historical development, the “general” oper-
ations of one relativity can constitute the “idolized” group of the next relativity as
seen in the two chains ending in full general linear groups, a real one for spacetime
concepts, from flat to spherical earth to special and general relativity, and a com-
plex one for interactions, from electromagnetic to electroweak transformations
and their spacetime (gauge) dependence:

SO(2) ⊂ SO(3) ⊂ SO0(1, 3) ⊂ GL(R4),

U(1)+ ⊂ U(2) ⊂ GL(C2).

All groups in the five relativities considered are real Lie groups. All “general”
groups are reductive, for perpendicular and rotation relativity even semisimple.
Perpendicular and electromagnetic relativity have a compact “general” group.
With the exception of Lorentz group relativity, all “idolized” groups are compact
subgroups. The 2nd column contains the dimension of the maximal abelian sub-
groups, which is the rank r of the group G generating Lie algebra L = log G, and
of the maximal noncompact abelian subgroups, i.e., the real rank rR. With the ex-
ception of GL(R4), the maximal abelian subgroups allow a unique decomposition
into compact Cartan torus and noncompact Cartan plane. A Cartan torus is a direct
product of circle groups in the form U(1) = exp iR or SO(2) ∼= exp σ3iR, a Cartan
plane is a direct product of additive line groups R (translations), which also can be
used in the multiplicative form D(1) = exp R or SO0(1, 1) ∼= exp σ3R. The rank
gives the number of independent invariants, rational or continuous r = nI + nR,
that characterize a G-representation. The real rank is the maximal number of the
continuous invariants nR ≤ rR.

Unitary relativity GL(C2)/U(2) ∼= D(1) × SO0(1, 3)/SO(3), i.e., the com-
plex linear relativization of the maximal compact subgroup with the internal
“chargelike” hypercharge and isospin operations U(2), is parametrized by a non-
compact real 4-dimensional homogeneous space, called causal spacetime D4, a
name to be justified below. Unitary relativity is visible in the spacetime dependence
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of quantum fields, which represent the internal operations. The representations of
unitary relativity D4 with a 2-dimensional Cartan plane are characterized by two
continuous invariants, which, in appropriate units, can be taken as two masses.
The D4-representations determine the spacetime interactions with their normal-
ization, especially the gauge interactions with their coupling constants related to
the ratio of the two invariants, and, for the D4-tangent translations R

4, the particles
and their masses. The common language for interactions and elementary parti-
cles is the representation theory and harmonic analysis of unitary relativity (more
below).

There is a mathematical framework, almost tailored for relativities: the theory
of induced representations, pioneered by Frobenius (1968), used for free particles
by Wigner (1939) and worked out for noncompact groups especially by Mackey
(1951). There, a subgroup H -representation induces a full group G-representation
leading to a G × H -representation as subrepresentation of the two-sided regular
G × G-representation. Such a dichotomic transformation property with a doubled
group, G × G as group and “isogroup,” is familiar, with respect to the Lorentz
and the isospin group, SU(2) × SU(2) as spin and isospin, from the fields in
the electroweak standard model. Especially for noncompact nonabelian groups,
the theory is not easy to penetrate. All the mathematical details are given in the
textbooks of Helgason (1984), Knapp (1986) and Folland (1995) and, especially
for distributions, of Treves (1967).

In the following, only some motivating and qualititive mathematical remarks
will be given with respect to this theory, which will be used in physical imple-
mentations. The first part of this paper works with finite-dimensional relativity
structures, which may be not so familiar in such a conceptual framework. After
a parametrization of the relativity manifold G/H, there will be given its funda-
mental representations, called transmutators, which mediate the transition from
an idolized group H to the full group G. With the fundamental transmutators all
finite dimensional relativity representations can be constructed as used, e.g., in
the transition from the fields for the electroweak interactions to the asymptotic
particles.

The mathematically more demanding second part (“Spacetime and uni-
tary relativity”) uses representations of noncompact operation groups on Hilbert
spaces, necessarily infinite-dimensional for faithful representations.

2. RELATIVITY PARAMETERS

There are operation-induced parameters for the real homogeneous relativity
spaces G/H, e.g., the three momenta (velocities) for rotation (special) relativity or
the three weak coordinates of electromagnetic relativity as used in the mass modes
of the three weak bosons.
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The action of a “general” group G on a set S, denoted by •, decomposes
S into disjoint orbits G • x for x ∈ S that are isomorphic to subgroup classes
G • x ∼= G/H where the “idolized” group H is the fixgroup (fixer, “little” group,
isotropy group) Gx of the G-action. The elements of homogeneous spaces gH ∈
G/H are group subsets (cosets), e.g., position rotation groups in a Lorentz group
or electromagnetic transformation groups in a hypercharge-isospin group. The
cosets have representatives gr ∈ gH ∈ G/H , written as gr ∈∈G/H , which can be
characterized by what will be called “relativity parameters,” a real parametrization
of the subgroup classes.

Relativity parameters can be obtained via orbit parametrizations. The real Lie
groups considered are linear groups H ⊆ G ⊆ GL(V ), acting on real or complex
vector spaces V . The orbit G • x parametrizes the homogeneous space G/H by
V -vectors and their components with respect to a basis,

x ∈ V, H ∼= Gx = {g ∈ G
⎪
⎪
⎪
⎪g • x = x}

⇒ G/H ∼= G • x ⊆ V.

2.1. Weak Coordinates for Electromagnetic Relativity

The hypercharge-isospin group U(2) acts, in the defining representation, on
a complex 2-dimensional vector space:

U(2) � u = eiα0

(

eiα3 cos θ
2 −e−iϕ sin θ

2

eiϕ sin θ
2 e−iα3 cos θ

2

)

.

Each nontrivial vector has a U(1)-isomorphic fixgroup, e.g. e2, which defines
U(1)+ as an “idolized” electromagnetic subgroup,

C
2 ∼= V � e2 =

(

0

1

)

⇒
(

e2iα0 0

0 1

)

∈ U(2)e2 = U(1)+.

The orbits of the chosen vector, here u • e2, and its U(2)-orthonormal partner,
here (u • e2)⊥, give the two columns of the matrix parametrization v ∈ U(2) of
the Goldstone manifold G3,

G3 ∼= U(2)/U(1)+ ∼= {((u • e2)⊥, u • e2) = v
⎪
⎪
⎪
⎪u ∈ U(2)},

v =
(

ei(α3−α0) cos θ
2 −e−i(ϕ−α0) sin θ

2

ei(ϕ−α0) sin θ
2 e−i(α3−α0) cos θ

2

)

.

In the standard model of electroweak interactions the vector space V ∼= C
2

desribes the chargelike degrees of freedom of the Higgs field. The three weak
parameters (α3 − α0, ϕ − α0, θ ) parametrize electromagnetic relativity. As mani-
fold, not as group, the Goldstone manifold G3 is isomorphic to SU(2).
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2.2. Orbits of Metric Tensors

With the exception of electromagnetic relativity, all relativity parameters will
by given by the “general” group G-orbit of a metric invariant under the action of
an “idolized” subgroup H . In this context, the homogeneous space G/H for H -
relativity was called, by Weyl (1923), orientation manifold of the metric (bilinear
or sesquilinear product).

The invariance of a metric3 γ with respect to the action of a linear group,

GL(V ) ⊃ H � g, γ (x, y) �−→ γ (g • x, g • y) = γ (x, y) for all x, y ∈ V,

gives the parametrization of the fixgroup classes by the orbit of the metric tensor
γ ,

{g ∈ G ⊆ GL(V )
⎪
⎪
⎪
⎪g ◦ γ ◦ g∗ = γ } = H ⇒ {g ◦ γ ◦ g∗⎪⎪⎪

⎪g ∈ G} ∼= G/H.

2.3. Metric Tensor for Lorentz Group Relativity

A bilinear form (metric) of a vector space V is a power two tensor γ ∈
V T ⊗ V T with the dual vector space V T (linear forms). For an n-dimensio-
nal space, the subspaces V T ∧ V T , totally antisymmetric, denoted by ∧, and
V T ∨ V T , totally symmetric, denoted by ∨, have the dimensions

(
n

2

)

and
(
n+1

2

)

respectively.
A real vector space V ∼= R

n has a causality structure by embedding the cone
of the positive numbers R+ −→ V+ ⊂ V into the “future” cone of the vector
space x � 0 ⇐⇒ x ∈ V+. A nontrivial “future” cone V+ �= {0} can be defined
by a bilinear symmetric form with “causal” signature (t, s) = (1, s) invariant under
the generalized Lorentz group SO0(1, s). Such a causality structure for V ∼= R

1+s

is familiar for time R with total order and Minkowski spacetime R
4 with the

special relativistic partial order.
Any metric tensor of V ∼= R

4 with causal signature (1, 3), e.g., an orthonormal
Lorentz metric tensor,

V ∼= R
4, η =

(

1 0

0 −13

)

∈ V T ∨ V T ,

defines an “idolized” Lorentz group as invariance group. Its GL(R4)-orbit leads
to a parametrization of the metric manifold with dimension

(5
2

) = 10 for Lorentz
group relativity

M10 ∼= GL(R4)/O(1, 3) ∼= {h ◦ η ◦ hT = γ
⎪
⎪
⎪
⎪h ∈ GL(R4)}, (1)

γ ∼= γ µν = h
µ

j ηjkhν
j = γ νµ; (2)

here µ, j ∈ {0, 1, 2, 3}.
3 Usual notation for the metric γ µν = gµν , here g ∈ G is reserved for group elements.
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2.4. Spherical Coordinates for Perpendicular Relativity

With the local isomorphy of the rotation group to the spin group SO(3) ∼
SU(2) an “idolized” axial rotation subgroup SO(2) ⊂ SU(2) is given by the invari-
ance group of the hermitian and traceless Pauli matrix σ3. Its SU(2)-orbit leads to
the 2-sphere parametrization of perpendicular relativity,

σ3 =
(

1 0
0 −1

)

, �2 ∼= SO(3)/SO(2) ∼=
{

u ◦ σ3 ◦ u	 = �x
r

⎪
⎪
⎪
⎪u ∈ SU(2)

}

,

�x
r

∼=
�xα
β

r
= uα

j σ3
j

ku
	k
β ;

here α, j ∈ {1, 2}. The two angles (spherical coordinates) in the traceless hermitian
matrix �x

r
can be parametrized by three position translations with one condition for

the determinant,

�x
r

= �x	

r
=
(

cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)

= 1

r

(

x3 x1 − ix2

x1 + ix2 −x3

)

with tr �x
r

= 0 and − det �x
r

= �x2

r2 = 1.

The restriction uses the rotation SO(3)-invariant product �x2 = x2
3 + x2

1 + x2
2

in three dimensions.

2.5. Momenta for Rotation Relativity

An “idolized” rotation group SO(3) in a Lorentz group SO0(1, 3) is char-
acterized by a distinguished definite metric of a real 3-dimensional vector space
(position), e.g., γ = 13. Similarly, one can work with a sesquilinear scalar product
δ of a complex 2-dimensional space V ∼= C

2 invariant under the locally isomor-
phic spin group SU(2) ∼SO(3) in the special linear group SL(C2) ∼SO0(1, 3).
The SL(C2)-orbit of the metric parametrizes rotation relativity by the points of an
energy-momentum 3-hyperboloid,

δ = 12, Y3 ∼= SO0(1, 3)/SO(3) ∼=
{

s ◦ δ ◦ s	 = q

m

⎪
⎪
⎪
⎪s ∈ SL(C2)

}

,

q

m
∼= qA

Ḃ

m
= sA

α δα
β s	β

Ḃ
;
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here A, α ∈ {1, 2}. The three real hyperbolic coordinates in the hermitian matrix q

m

can be chosen from four energy-momenta with one condition for the determinant,

q

m
= q	

m
=
(

cosh 2β + cos θ sinh 2β e−iϕ sin θ sinh 2β

eiϕ sin θ sinh 2β cosh 2β − cos θ sinh 2β

)

= 1

m

(

q0 + q3 q1 − iq2

q1 + iq2 q0 − q3

)

with det q

m
= q2

m2 = 1.

The restriction of the four energy-momenta to the three momenta uses the
SO0(1, 3)-invariant bilinear form q2 = q2

0 − �q2.

2.6. Spacetime Future for Unitary Relativity

An “idolized” unitary group U(2), called hyperisospin group, a maximal
compact subgroup of the general linear group GL(C2), called extended Lorentz
group, is given by the invariance group of a scalar product δ of a complex 2-di-
mensional vector space. The GL(C2)-orbit defines four real parameters for unitary
relativity, i.e., for the orientation manifold of the U(2)-scalar product,

δ = 12, D4 ∼= GL(C2)/U(2) ∼= {ψ ◦ δ ◦ ψ	 = x|ψ ∈ GL(C2)},
x ∼= xA

Ḃ
= ψA

α δα
βψ	

Ḃ
β,

x = x	 =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

;

here A, α ∈ {1, 2}. These four real orbit parameters characterize the strictly posi-
tive elements in the C∗-algebra of complex (2 × 2) matrices,

x = ψ ◦ ψ	 ⇐⇒ x = x	 and spec x > 0

⇐⇒ det x = x2 > 0 and tr x = 2x0 > 0.

They describe the absolute modulus set in the polar decomposition of GL(C2)
into noncompact classes for the maximal compact group with the unitary phases,

GL(C2) � ψ = |ψ | ◦ u ∈ D(2) ◦ U(2),

GL(C2)/U(2) ∼= D(2) � |ψ | =
√

ψ ◦ ψ	 = √
x.

The positive matrices x are parametrizable by the points of the open future
cone in flat Minkowski spacetime,

D4 ∼= R
4
+ = {x ∈ R

4
⎪
⎪
⎪
⎪x2 > 0, x0 > 0}.
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The cone manifold is embeddable into its own tangent space, the space-
time translations R

4 ⊃ D4. They inherit the action of the dilation extended or-
thochronous Lorentz group GL(C2)/U(1) ∼= D(1) × SO0(1, 3), which constitutes
the homogeneous part in the extended Poincaré group [D(1) × SO0(1, 3)] �×R

4.

3. RELATIVITY TRANSITIONS

Elements of a relativity, i.e., of a homogeneous space G/H, are related to
each other by the action of the full group G, e.g., different perpendicularities by
rotations of the earth’s surface or different nonrelativistic space-times by Lorentz
transformations of spacetime.

With real parameters for H -relativity G/H one can partly parametrize the
“general” group G. Each coset can be given a defining representative gr ∈ gH ⊆
G as linear operation on a complex vector space. Such representatives have a char-
acteristic two-sided G × H transformation behavior in the group G × G, called
relativity transition or transmutation from the “general” group to the “idolized”
group: A left multiplication of the representative gr ∈ gH by k ∈ G hits the chosen
representative (kg)r ∈ kgH up to a right multiplication with an H -element,

k ∈ G, kgr = (kg)rh(gr, k) with h(gr, k) ∈ H.

The group action k ∈ G is accompanied by an action from the “idolized”
subgroup h(gr, k) ∈ H , which depends on the representative gr . It is called Wigner
element and Wigner subgroup-operation, in generalization of the familiar Wigner
rotation, which arises from a Lorentz transformation of a boost.

3.1. From Interaction Group to Particle Group

An example where both electromagnetic relativity with the transition U(2) →
U(1)+ and rotation (special) relativity with the transition SL(C2) → SU(2) play a
role is the transition from relativistic electroweak interaction fields to particles in
the standard model Saller (2001),

SL(C2) × U(2) −→ SU(2) × U(1)+
Lorentz hypercharge − isospin spin electromagnetic

For example, the lepton field in the minimal model connects, for each spacetime
translation, the two SL(C2)-degrees of freedom with the two isospin SU(2) degrees
of freedom and a hypercharge U(1) value y = − 1

2

R
4 � x �−→ l(x)Aα with A, α ∈ {1, 2}.

The transition from interaction field to particles with respect to inter-
nal degrees of freedom uses the ground state degeneracy, implemented by the
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U(2)-invariant condition 〈	(x)〉 = M2 > 0 with the Lorentz scalar Higgs field

R
4 � x �−→ (x)α.

It is an isospin doublet with hypercharge y = 1
2 . The Higgs field transmutes

from “general” hyperisospin U(2)-properties of the lepton field to “idolized” elec-
tromagnetic U(1)+-properties of the particles, e.g., for the electron-positron field,
an isosinglet with electromagnetic charge number z = −1,

U(2) −→ U(1)+ : l(x)Aα �−→ e(x)A = (x)α

||(x)
l(x)Aα = l(x)A2 + . . .

The “idolization” comes with the distinction of a ground state and the expansion

of the Higgs transmutator (more below) α (x)
||(x) = δα

2 + . . . for e2 = (
0
1

) ∼= δα
2 and

||(x) = √
	(x).

With respect to external degrees of freedom, the transition from a left-handed
Weyl field with Lorentz group SL(C2)-action to particles with mass m > 0 and
SU(2)-spin requires a rest system. The related harmonic expansion of the space-
time field with respect to eigenvectors involves the electron creation and positron
annihilation operators ua(�q) and a	a(�q) respectively for spin directions a ∈ {1, 2}
and momentum �q as translation eigenvalues,

SL(C2) −→ SU(2) : e(x)A �−→ u(�q)a, a	(�q)a

where e(x)A =⊕
∫

d3q

2q0
s
( q

m

)A

a
[eiqxu(�q)a + e−iqxa	(�q)a]

with q0 =
√

m2 + �q2.

The boost representation s( q

m
)Aa , discussed below as Weyl transmutator, connects

the Lorentz group SL(C2)-action for fields with a rest system spin SU(2)-action
for massive particles.

Altogether, there are four transmutators involved with G × H -transforma-
tions for four different group pairs H ⊂ G: the lepton field with external-internal
transformation behavior, the Higgs field as internal transmutator from interaction
to particles, the boost representation as corresponding external transmutator, which
leaves the creation and annihilation operators with the external-internal properties
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of the particles (spin and charge)

interactions
l(x)Aα

GL(C2) ←→ U(2)

external s
(

q

m

)a

A
� � (x)α internal

SU(2) ←→ U(1)+
u(�q)a, a	(�q)a

particles

3.2. Pauli Transmutator

Perpendicular relativity, parametrizable by a 2-sphere of radius r , is repre-
sented as linear operator by the fundamental Pauli transmutator from rotations to
axial rotations,

R
3 ⊃ �2 � �x

r
�−→ u

( �x
r

)

∈ SU(2),

u

( �x
r

)

◦ σ3 ◦ u	

( �x
r

)

= �x
r

= σaxa

r
with r2 = �x2,

u

( �x
r

)

= ei �α = 12 cos α + i
�α
α

sin α with tan 2α = tan θ =
√

x2
1 + x2

2

x3

=
√

x3 + r

2r

[

12 + i
�x⊥

x3 + r

]

= 1√
2r(x3 + r)

(

x3 + r −x1 + ix2

x1 + ix2 x3 + r

)

= u(ϕ, θ ) =
(

cos θ
2 −e−iϕ sin θ

2
eiϕ sin θ

2 cos θ
2

)

.

An action on the Pauli transmutator u( �x
r
) from left with the spin group SU(2)

gives the transmutator at the rotated point O.�x on the 2-sphere and a right action
with the axial group SO(2) (Wigner axial rotation)

o ∈ SU(2) : o ◦ u

( �x
r

)

= u

(

O.�x
r

)

◦ v

(

o,
�x
r

)

with

⎧

⎪
⎨

⎪
⎩

v
(

o, �x
r

) ∈ SO(2),

O.�x = o ◦ �x ◦ o	,

Ob
a = 1

2 tr σa ◦ o ◦ σb ◦ o	 ∈ SO(3).
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The explicit complicated looking expression for the Wigner axial rotation can be
computed from v(o, �x

r
) = u	(O.�x

r
) ◦ o ◦ u( �x

r
).

3.3. Weyl Transmutators

In special relativity, the Weyl representations of the boosts, parametrized by
the energy-momentum hyperboloid for mass m > 0, are a familiar example for a
transmutator,

R
4 ⊃ Y3 � q

m
�−→ s

( q

m

)

∈ SL(C2),

s
( q

m

)

◦ 12 ◦ s	
( q

m

)

= q

m
= σ jqj

m
with m2 = q2

and Weyl matrices σ j = (12, �σ ) and σ̌ j = (12, −�σ ). The explicit expressions
involve the Pauli transmutator for the two spherical degrees of freedom:

q

m
= u

( �q
|�q|

)

◦ e2βσ3 ◦ u	

( �q
|�q|

)

,

e2βσ3 = diag
q

m
= 1

m

(

q0 + |�q| 0
0 q0 − |�q|

)

, tanh 2β = |�q|
q0

= v

c
,

s
( q

m

)

= u

( �q
|�q|

)

◦ eβσ3 = 12 cosh β + �q
|�q| sinh β

=
√

q0 + m

2m

[

12 + �q
q0 + m

]

= 1√
2m(q0 + m)

(

q0 + q3 + m −q1 + iq2

q1 + iq2 q0 − q3 + m

)

.

The left-handed Weyl transmutator s( q

m
) ∈ SL(C2) together with its right-

handed partner ŝ( q

m
) = u( �q

|�q| ) ◦ e−βσ3 ∈ SL(C2) where ŝ = s−1	 are the two fun-
damental transmutators from Lorentz group to rotation subgroups. The restriction
in the energy-momenta from four to three parameters by the on-shell hyperboloid
Y3 condition q2

m2 = 1 is expressed by the Dirac equation in energy-momentum



Relativities and Homogeneous Spaces I 2193

space,

s
(

q

m

) ◦ ŝ−1
(

q

m

) = σ j qj

m
⇒ s

(
q

m

) = σ j qj

m
◦ ŝ

(
q

m

)

ŝ
(

q

m

) ◦ s−1
(

q

m

) = σ̌ j qj

m
⇒ ŝ

(
q

m

) = σ̌ j qj

m
◦ s

(
q

m

)

}

⇒ (

γ jqj − m
)

s
( q

m

)

= 0

with γ j =
(

0 σ j

σ̌ j 0

)

, s
( q

m

)

=
(

s
(

q

m

)

0
0 ŝ

(
q

m

)

)

.

The four columns of the (4 × 4) matrix s( q

m
) are familiar as solutions of the Dirac

equation.
For the Pauli transmutator, the analogue to the Dirac equation is the condition

σaxau( �x
r
) − u( �x

r
)σ3r = 0, which restricts the three parameters to two independent

perpendicular ones.
An action from left with the Lorentz group SL(C2) gives the Weyl transmuta-

tor at the Lorentz transformed energy-momenta �.q on the hyperboloid q2 = m2,
accompanied by a right action with a Wigner spin SU(2)-rotation

λ ∈ SL(C2) : λ ◦ s
( q

m

)

= s

(

�.q

m

)

◦ u
( q

m
, λ
)

with

⎧

⎪
⎨

⎪
⎩

u
(

q

m
, λ
) ∈ SU(2),

�.q = λ ◦ q ◦ λ	,

�k
j = 1

2 tr σj ◦ λ ◦ σ̌ k ◦ λ	 ∈ SO0(1, 3).

3.4. Higgs Transmutators

In the standard model of electroweak interactions the three weak parameters
for the Goldstone manifold of electromagnetic relativity are implemented by three

chargelike degrees of freedom of the Higgs vector α ∼= (
1

2) ∈ V ∼= C
2 and its

orthogonal εαβ	
β ,

C
2 ⊃ G3 � 

M
�−→ v

(



M

)

∈ U(2),

v

(



M

)

=
(

ei(α3−α0) cos θ
2 −e−i(ϕ−α0) sin θ

2
ei(ϕ−α0) sin θ

2 e−i(α3−α0) cos θ
2

)

= u(ϕ − α3, θ ) ◦ ei(α3−α0)σ3

= 1

M

(

	
2 1

−	
1 2

)

with det v

(



M

)

= |1|2 + |2|2

M2
= 1.
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The restriction from four to three real weak degrees of freedom uses the U(2)-
invariant scalar product 〈|〉 = M2 of the Higgs vector space.

A left hypercharge-isospin action on the fundamental Higgs transmutator
gives the transmutator at the U(2)-transformed Higgs vector on the Goldstone
manifold, accompanied by a Wigner electromagnetic U(1)+-transformation from
right

u ∈ U(2) : u ◦ v
(


M

) = v
(

u.
M

) ◦ u+ with

⎧

⎨

⎩

u = eiγ0u2 ∈ U(1) ◦ SU(2),

u+ =
(

ei2γ0 0
0 1

)

∈ U(1)+.

3.5. Real Tetrads (Vierbeins)

For general relativity, the 10-parametric GL(R4)-orbit of the orthonormal
O(1, 3)-‘idolized ” Lorentz metric in a symmetric matrix η = ηT is diagonalizable
to four principal axes with a transformation from a maximal compact subgroup
O(4) ⊂ GL(R4) (6 parameters),

γ = h ◦ η ◦ hT = γ T = O(γ ) ◦ diag γ ◦ O(γ )T with O(γ ) ∈ O(4).

The diagonal part of the metric hyperboloid, multiplied by the inverse metric η−1,
displays the remaining four dilation transformations from the maximal noncom-
pact abelian subgroup,

η−1 ◦ diag γ = e2[d(γ )+d0(γ )] ∈ D(1) × SO0(1, 1)3 ∼= D(1)4 ⊂ GL(R4).

The diagonal elements are four directional units, one for time and three for the
metric ellipsoid of 3-position.

The operational decomposition of the metric hyperboloid leads to the para-
metrization of the 10-dimensional tetrad h as basis of real 4-dimensional tangent
spacetime R

4 with four dilations and a 6-dimensional rotation

M10 � γ �−→ h(γ ) ∈ D(1)4 × O(4) ⊂ GL(R4), h(γ ) = ed(γ )+d0(γ ) ◦ O(γ ).

A general linear GL(R4) left-multiplication gives the tetrad for a transformed
metric tensor and a Wigner right-transformation by the idolized Lorentz group
O(1, 3),

g ∈ GL(R4) : g ◦ h(γ ) = h(g ◦ γ ◦ gT ) ◦ �(g, γ ) with �(g, γ ) ∈ O(1, 3).

3.6. Complex Dyads (Zweibeins)

Nonlinear spacetimeD4, i.e., the orientation manifold of U(2)-scalar products
for unitary relativity, is parametrizable by the future cone,

x ∈ D4 ∼= GL(C2)/U(2) = D(12) × SL(C2)/SU(2) ∼= D(1) × Y3.
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It is transformed to an “idolized” diagonal scalar product by a Weyl transmutator
s( x√

x2
) ∈ SL(C2) for the three hyperbolic degrees of freedom and a dilation D(1) =

exp R ∼= R for eigentime e2β0 =
√

x2,

x =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

= s

(

x√
x2

)

◦ e2β012 ◦ s	

(

x√
x2

)

= u

( �x
r

)

◦ diag x ◦ u	

( �x
r

)

,

diag x =
(

x0 + r 0
0 x0 − r

)

= e2(β012+βσ3) ∈ D(1) × SO0(1, 1)

with e4β0 = x2, tanh 2β = r

x0
.

The diagonalization of the scalar products gives the fundamental transmutator
from the extended Lorentz group to the hyperisospin subgroup. It is a basis of
the complex 2-dimensional space and will be called, in analogy to a real tetrad
or vierbein, a complex dyad or zweibein. It is parametrized by the future cone
spacetime points as orbit of the U(2)-scalar product,

R
4 ⊃ D4 � x �−→ ψ(x) ∈ GL(C2),

ψ(x) ◦ 12 ◦ ψ	(x) = x,

ψ(x) = s

(

x√
x2

)

◦ eβ012 = u

( �x
r

)

◦ eβ012+βσ3 .

The left action with the extended Lorentz group GL(C2) as external transfor-
mation gives the dyad ψ at a Lorentz transformed and dilated spacetime point in
the future cone, accompanied by an action from right with an internal spacetime
dependent Wigner hyperisospin U(2)-transformation,

g ∈ GL(C2) : g ◦ ψ(x) = ψ(e2δ0�.x) ◦ u(x, g)

with

⎧

⎪
⎨

⎪
⎩

u(x, g) ∈ U(2),

g = eδ0+iα0λ ∈ D(1) × U(1) ◦ SL(C2),

g ◦ x ◦ g	 = e2δ0λ ◦ x ◦ λ	 = e2δ0�.x, � ∈ SO0(1, 3).

4. LINEAR REPRESENTATIONS OF RELATIVITIES

In the foregoing section, the classes G/H of the five relativities with lin-
ear groups were represented by defining linear transformations. The products of
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these fundamental transmutators give the finite-dimensional representations of the
homogeneous spaces G/H.

4.1. Rectangular Transmutators

Representations of the “general” group G involve representations of the
cosets G/H representatives,

G � g �−→ D(g) ∈ GL(V ),

G/H � gH � gr �−→ D(gr ),

e.g. for perpendicular relativity

SU(2) � u(ϕ, θ, χ ) =
(

ei
χ+ϕ

2 cos θ
2 −ei

χ−ϕ

2 sin θ
2

e−i
χ−ϕ

2 sin θ
2 e−i

χ+ϕ

2 cos θ
2

)

�−→ u(ϕ, θ, χ )r = u(ϕ, θ ) =
(

cos θ
2 −e−iϕ sin θ

2

eiϕ sin θ
2 cos θ

2

)

∈∈SU(2)/SO(2) ∼= �2

A G-representation can be decomposed into H -representations. In an (n × n)
matrix representation,

D(g) ∈ V ⊗ V T ∼= C
n ⊗ C

n e.g.,∼

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with an (8 × 8)-example for SU(3) and the octet decomposition 8 = 2 + 1 + 3 + 2
into SU(2)-representations,

V
H∼=

k
⊕

ι=1

Vι, H • Vι ⊆ Vι, D(h)
H∼=

k
⊕

ι=1

dι(h)
e.g.,∼

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

• • 0 0 0 0 0 0
• • 0 0 0 0 0 0
0 0 • 0 0 0 0 0
0 0 0 • • • 0 0
0 0 0 • • • 0 0
0 0 0 • • • 0 0
0 0 0 0 0 0 • •
0 0 0 0 0 0 • •

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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the G-representation matrices can be decomposed into rectangular (n × nι) ma-
trices, nι ≤ n,

D(g) =
k

⊕

ι=1

Dι(g) = (D1(g)|D2(g)| · · · |DI (g))
e.g.,∼

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with left-right G × H -action, e.g., the SU(3) × SU(2)-action on octet-dublet,
octet-singlet, octet-triplet and octet-dublet. As mappings of the coset represen-
tatives (G/H )r , they are called transmutators:

(G/H )r � gr �−→ Dι(gr ) ∈ V ⊗ V T
ι

∼= C
n ⊗ C

nι

with

⎧

⎪
⎨

⎪
⎩

Dι(grh) = Dι(gr ) ◦ dι(h), h ∈ H,

Dι(kgr ) = D(k) ◦ Dι(gr )

= D((kg)r ) ◦ dι(h(k, gr )), k ∈ G.

With bases of the G-vector spaces |D; j 〉 ∈ V and the H -vector spaces |ι; a〉 ∈
Vι one has in a Dirac notation with kets for vectors | 〉 ∈ V and bras for linear
forms 〈 | ∈ V T

ι

V ⊗ V T
ι � Dι(gr ) = |D; j 〉Dι(gr )ja〈ι; a|,

e.g. C
8 ⊗ C

2 � D2(gr ) = |8; j 〉D2(gr )ja〈2; a|, j = 1. . . . , 8; a = 1, 2.

The finite-dimensional transmutators are (n × nι)-dimensional vector spaces
with G × H -representations. Those representations are unitary, called Hilbert re-
presentations, only for the compact relativities, i.e., in the examples above, for
perpendicular and electromagnetic relativity. There, the transmutators are com-
plete for the harmonic analysis of the Hilbert spaces with the square integrable
functions L2(G/H ) of the orientation manifold of the relativity (more below).

4.2. Representations of Perpendicular Relativity

For perpendicular relativity, all transmutators from rotations to axial rotations

arise by the totally symmetric products, denoted by
2J
∨

, of the fundamental Pauli
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transmutator u( �x
r
) ∈ SU(2),

SU(2)/SO(2) ∼= �2 −→ SU(1 + 2J, )

�x
r

�−→ [2J ]

( �x
r

)

=
2J
∨

u

( �x
r

)

, �x2 = r2.

The irreducible spin SU(2)-representations [2J ] are decomposable into axial
rotation SO(2)-representations (n) with dimension 2 for n �= 0 and two polariza-
tions ±n (left- and right-circulary polarized) :

irrep SU(2) � [2J ]
SO(2)∼=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

2J
⊕

n=0,2,..

(n) for J = 0, 1, . . . ,

2J
⊕

n=1,3,..

(n) for J = 1
2 , 3

2 , . . . ,

e.g., for rotations acting on 3-position R
3 with a, b ∈ {1, 2, 3} and α, β ∈ {1, 2}:

[2]

( �x
r

)

∼= O

( �x
r

)b

a

= 1

2
tr u

( �x
r

)

◦ σb ◦ u	

( �x
r

)

◦ σa

= 1

r

(

δαβr − xαxβ

r+x3
xα

−xβ x3

)

∈ SO(3),

[2]
SO(2)∼= (2) ⊕ (0)

with the relations for the SO(3) and SO(2) metric tensors

O

( �x
r

)a

α,3

δabO

( �x
r

)b

β,3

=
(

δαβ 0
0 1

)

, O

( �x
r

)a

α

δαβO

( �x
r

)b

β

= δab − xaxb

r2
.

The 2nd symmetric power of the Pauli transmutator, in a Cartesian and a
spherical basis,

O

( �x
r

)

=
(

δαβ − xαxβ

r(r+x3)
xα

r

− xβ

r

x3
r

)

∼=

⎛

⎜

⎝

eiϕ cos2 θ
2 −eiϕ sin2 θ

2 ieiϕ sin θ√
2

i sin θ√
2

i sin θ√
2

cos θ

−e−iϕ sin2 θ
2 e−iϕ cos2 θ

2 ie−iϕ sin θ√
2

⎞

⎟

⎠,

displays in the 3rd column O( �x
r
)b3 the spherical harmonics Y1(ϕ, θ ) ∼ �x

r
as a basis

for the C
3-Hilbert subspace in the Hilbert space L2(�2) with the square integrable

functions on the 2-sphere. Its symmetric traceless products of power J = 1, 2, . . .

give the spherical harmonics YJ (ϕ, θ ) ∼ ( �x
r
)Jtraceless which arise as the (1 + 2J )-

entries in one column of the (1 + 2J ) × (1 + 2J ) matrices for the representation
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[2J ]. The spherical harmonics are bases for the Hilbert spaces C
1+2J ⊂ L2(�2)

with the irreducible SO(3)-representations.
With respect to the dichotomic SU(2) × SO(2)-transformation behavior, the

four functions in the two columns of the (2 × 2)-Pauli transmutator,

u

( �x
r

)

=
⎛

⎝

√

x3+r

2r
− x1−ix2√

2r(x3+r)

x1+ix2√
2r(x3+r)

√

x3+r

2r

⎞

⎠ =
(

cos θ
2 −e−iϕ sin θ

2
eiϕ sin θ

2 cos θ
2

)

∈ C
2 ⊗ C

2,

and the six functions in the 1st and 2nd column O( �x
r
)b1,2

∼= O( �x
r
)b+,− above in a

rectangular (3 × 2) matrix constitute bases for finite-dimensional Hilbert spaces
C

2 ⊗ C
2 and C

3 ⊗ C
2 with SU(2)-representations on C

2 and C
3, acting from

left, and nontrivial SO(2)-representations SO(2) � eiα3σ3 �−→ einα3σ3 on C
2 with

n = 1, 2 respectively, acting from right. They are irreducible subspaces in the
harmonic analysis of the Hilbert space L2(�2, C

2) with the square integrable
mappings from the 2-sphere into a vector space with nontrivial SO(2)-action.

In general one has the Peter-Weyl decompositions Peter and Weyl (1927) into
irreducible subspaces for SU(2) × SO(2) action:

Vn
∼= C

2−δn0 : L2(�2, Vn) ∼=
⊕

2Jn

C
1+2J ⊗ Vn (dense).

The orthogonal sum goes over all SU(2)-representation that contain the SO(2)-re-
presentation on Vn

∼= C, C
2. This generalizes the case for the spherical harmonics

with V0
∼= C.

4.3. Representations of Rotation Relativity

For special relativity, all finite-dimensional 3-hyperboloid representations
(boost representations), i.e., all finite-dimensional transmutators from Lorentz
group to rotation group, can be built by the totally symmetric products of the two
fundamental Weyl transmutators s( q

m
), ŝ( q

m
) ∈ SL(C2),

SL(C2)/SU(2) ∼= Y3 −→ SL(C(1+2L)(1+2R)),

q

m
�−→ [2L|2R]

( q

m

)

=
2L
∨

s
( q

m

)

⊗
2R
∨

ŝ
( q

m

)

, q2 = m2.

The finite-dimensional irreducible Lorentz group representations can be de-
composed into irreducible spin representations,

irrep finiteSL(C2) � [2L|2R]
SO(2)∼=

L+R
⊕

J=|L−R|
[2J ].
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For example, the vector representation � = [1|1] gives two irreducible trans-
mutators from Lorentz group to rotation group, the first column for spin 0-
representation and the three remaining columns for spin 1-representation, with
a, b ∈ {1, 2, 3},

[1|1]
( q

m

)

= �
( q

m

)j

k

∼= 1

2
tr s

( q

m

)

◦ σ j ◦ s	
( q

m

)

◦ σ̌k

= 1

m

(

q0 qa

qb δabm + qaqb

m+q0

)

∈ SO0(1, 3),

[1|1]
SO(2)∼= [0] ⊕ [2].

The four columns of the matrix �( q

m
)j0,a relate to each other the metric tensors

of SO0(1, 3) and SO(3)

�
( q

m

)k

0,a
ηkj�

( q

m

)j

0,b
=
(

1 0
0 −δab

)

, �
( q

m

)k

a
δab�

( q

m

)j

b
= −ηkj + qkqj

m2
.

The transmutators from Lorentz group to rotation group in the rectangu-
lar (4 × 3)-submatrix �( q

m
)ka ∈ R

4 ⊗ R
3 are used for massive spin 1 particles in

Lorentz vector fields, e.g., for the neutral weak boson and its Feynman propagator,

Z(x)j = ⊕
∫

d3q

2q0
�
( q

m

)j

a
[eiqxu(�q)a + e−iqxu	(�q)a],

〈{Zk(y), Zj (x)} − ε(x0 − y0)[Zk(y), Zj (x)]〉

= i

π

∫

d4q

(2π )3

(

−ηkj + qkqj

m2

)

q2 + io − m2
eiq(x−y).

In contrast to compact perpendicular relativity with the Hilbert space L2(�2),
the Hilbert space for the square integrable functions on the 3-hyperboloid L2(Y3)
has no finite-dimensional Hilbert subspaces with irreducible SL(C2)-representa-
tions. The monomials in the columns of the fundamental Weyl transmutators give
bases for finite-dimensional SL(C2) × SU(2) representations on C

(1+2L)(1+2R) ⊗
C

1+2J , which are indefinite unitary for the noncompact Lorentz group SL(C2).
The spin SU(2)-representation has to be contained in the SL(C2)-representation,
i.e., |L − R| ≤ J ≤ L + R.

4.4. Representations of Electromagnetic Relativity

For the standard model of electroweak interactions, the Higgs parametri-
zed defining representation of the orientation manifold G3 of the electromagnetic
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group with hypercharge y = 1
2 and isospin T = 1

2 and its conjugate, i.e., the two
Higgs transmutators

[

1

2
|1
](



M

)

= v

(



M

)

= 1

M

(

	
2 1

−	
1 2

)

, ||2 = M2,

[

−1

2
|1
](



M

)

= v	

(



M

)

,

give, via their products, all irreducible representations of the Goldstone manifold:

U(2)/U(1)+ ∼= G3 −→ U(1 + 2T ),


M
�−→ [±n + T |2T ]

(



M

)

,

irrep U(2) � [±n + T |2T ] ∼= [±1|0]n ⊗
2T
∨

[

1

2
|1
]

,

irrep U(1) � [±1|0] ∼=
[

±1

2
|1
]

∧
[

±1

2
|1
]

.

Because of the central correlation SU(2) ∩ U(12) = {±12} in U(2), the U(2)-
representations have the correlation of the hypercharge- and isospin-invariant
y = T ± n with natural n, i.e., the two invariants (y, T ) for the rank 2 U(2)-trans-
formations are either both integer or both halfinteger as visible in the colorless
fields of the standard model.

The decomposition of a hyperisospin U(2)-representation into irreducible re-
presentations of the electromagnetic group U(1)+ � ei2γ0 �−→ ezi2γ0 is given with
integer charge numbers z ∈ Z:

U(2) � [±n + T |2T ]
U(1)+∼=

±n+2T
⊕

z=±n

[z],

e.g.,

{

[± 1
2 |1] ∼= [0] ⊕ [±1],

[0|2] ∼= [ − 1] ⊕ [0] ⊕ [1].

The (1 × 1) examples with antisymmetric power 2 of the fundamental Higgs
transmutators give the transmutation from hyperisospin U(2) to electromagnetic
U(1)+ on C for hypercharge nontrivial isospin SU(2)-singlets with charge numbers
z = ±1,

[1|0]

(



M

)

= ̃	
αα

M2
∈ U(1) with [1|0]

U(1)+∼= [1], ̃α = εαβ	
β,

[ − 1|0]

(



M

)

= 	
α̃α

M2
∈ U(1) with [−1|0]

U(1)+∼= [−1].
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The (3 × 1) product of both fundamental Higgs transmutators describes an
hypercharge trivial isospin SU(2)-triplet. The columns are three transmutators to
charge z ∈ {−1, 0, 1},

[0|2]

(



M

)

= 1

2
tr τ b ◦ v

(



M

)

◦ τ a ◦ v	

(



M

)

=
(

	 �τ̃+̃	 �τ
2M2

	 �τ̃−̃	 �τ
2iM2

̃	 �τ̃−	 �τ
2M2

)

∈ SO(3)

with [0|2]
U(1)+∼= [−1] ⊕ [0] ⊕ [1].

These three transmutators are used for the transition from the three isospin
gauge fields in the electroweak standard model to the weak boson particles

τ aAa(x) = A(x) �−→ v

(

(x)

M

)

◦ A(x) ◦ v	

(

(x)

M

)

+
[

∂v

(

(x)

M

)]

◦ v	

(

(x)

M

)

= (W−(x), W0(x), W+(x)) = (A−(x), A0(x), A+(x)) + . . .

with [0|2]

(

(x)

M

)a

i

= δa
i + . . .

For the definition of particles with the transition from Lorentz group to rota-
tion group the neutral field W0 is combined, in the Weinberg rotation, with the
hypercharge gauge field.

Similar to perpendicular relativity, the Hilbert spaces of the square integrable
mappings of the compact Goldstone manifold L2(G3, Vz) into a Hilbert space
Vz

∼= C with electromagnetic action U(1)+ � ei2γ0 �−→ ezi2γ0 have Peter-Weyl
decompositions into finite-dimensional subspaces C

1+2T ⊗ C with irreducible
representations of U(2) × U(1) where the isospin representations fulfill 2T ≥
|z|. The representation spaces are given by the columns in the products of the
fundamental Higgs transmutator and its conjugate.

4.5. Representations of Unitary Relativity

All finite-dimensional representations of unitary relativity, i.e., of nonlinear
spacetime D4,

D4 ∼= GL(C2)/U(2) ∼= D(1) × SO0(1, 3)/SO(3) −→ GL(C(1+2L)(1+2R)),
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use products of the two conjugated dyads, e.g.,

ψ(x) = u

( �x
r

)

◦ eβ012+βσ3 ∈ GL(C2),

ψ(x) ◦ 12 ◦ ψ	(x) = u

( �x
r

)

◦ e2(β012+βσ3) ◦ u	

( �x
r

)

= x ∈ GL(C2),

(ψ(x) ◦ 12 ◦ ψ	(x))2 = e4β0 = x2 ∈ D(1).

The monomials in the dyads span finite-dimensional spaces with GL(C2) × U(2)-
representations that are indefinite unitary for the noncompact group GL(C2).
They are no Hilbert spaces and, therefore, of little importance for a quantum
structure. Hilbert spaces with faithful representations of nonlinear spacetime have
to be infinite dimensional. They will be treated in “Relativities and homogeneous
spaces II –Spacetime as unitary relativity.”

4.6. Representations of Lorentz Group Relativity

For general relativity, all finite-dimensional representations of the general
linear group GL(R4) for the tetrads,

GL(R4)/O(1, 3) ∼= D(1) × SL0(R4)/SO0(1, 3), SL0(R4) ∼SO0(3, 3),

are obtained by products of the fundamental representations of the rank 3 special
subgroup SL0(R4), which is locally isomorphic to the indefinite orthogonal group
SO0(3, 3). The three fundamental representations are the two 4-dimensional spinor
representations, dual to each other, and a 6-dimensional self-dual one,

dimR[1, 0, 0] = 4, dimR[0, 1, 0] =
(

4

2

)

= 6, dimR[0, 0, 1] =
(

4

3

)

= 4.

The dimensions of the finite-dimensional irreducible SL0(R4)-representations are
given by the Weyl formula:

irrep finiteSL0(R4) � [n1, n2, n3] ∼= N
3,

dn = dimR[n1, n2, n3]

= (n1 + 1)(n2 + 1)(n3 + 1)(n1 + n2 + 2)(n3 + n2 + 2)(n1 + n2 + n3 + 3)

12
,

dual reflection: [n1, n2, n3] ↔ [n3, n2, n1].

Self-dual representation spaces, i.e., for [n,m, n], have an SL(R4)-invariant sym-
metric bilinear form with neutral signature.
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The finite-dimensional representations of Lorentz group relativity, parame-
trized by the metric manifold,

GL(R4)/O(1, 3) ∼= M10 � γ �−→ [n1, n2, n3](γ ) ∈ GL(Rdn),

have decompositions with respect to an “idolized” Lorentz group. The three fun-
damental SL0(R4)-representations give the two fundamental SO0(1, 3)-represen-
tations, i.e., the 4-dimensional Minkowski representation and the 6-dimensional
adjoint representation,

[1, 0, 0], [0, 0, 1]
SO0(1,3)∼= [1|1],

[0, 1, 0]
SO0(1,3)∼= [2|0] ⊕ [0|2].

The totally antisymmetric powers of the defining SL0(R4)-representation
combine the two other fundamental ones

2
∧

[1, 0, 0] = [0, 1, 0],
3
∧

[1, 0, 0] = [0, 0, 1],
4
∧

[1, 0, 0] = [0, 0, 0]

They can be realized by the tetrad, a spinor representation, as fundamental trans-
mutator from general linear group to Lorentz group and its totally antisymmetric
powers

h
µ

j (γ ) ∈ GL(R4), hlm
κλ(γ ) = εµνκλε

jklmh
µ

j (γ )hν
k(γ ) ∈ GL(R6),

hm
λ (γ ) = εµνκλε

jklmh
µ

j (γ )hν
k(γ )hκ

k (γ ) ∈ GL(R4)

det h(γ ) ∈ GL(R)

The tetrad power-2 product is a (6 × 6) transmutator acted on by the self-dual
fundamental SL0(R4)-representation and the adjoint Lorentz group representa-
tion. It has the same transformation properties as the curvature tensor

γ �−→ Rlm
κλ(γ ) ∈ R

6 ⊗ R
6 with

[2|0] ⊕ [0|2]

[0, 1, 0] Rlm
κλ(γ )

The determinant with power 4 is an SL(R4)-scalar with nontrivial D(1)-dilation
properties.

Obviously, all those real finite-dimensional representation spaces of the non-
compact product GL(R4) × SO0(1, 3) have no invariant Hilbert product. A har-
monic analysis of, e.g., square integrable functions L2(M10) on the metric mani-
fold M10 ∼= GL(R4)/SO0(1, 3), does not play a role in classical gravity.
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5. RELATIVITY REPRESENTATIONS BY INDUCTION

Finite-dimensional rectangular mappings of homogeneous spaces G/H (H -
relativity), as discussed in the foregoing section, give all Hilbert representation
spaces only for compact relativities, e.g., for perpendicular and electromagnetic
relativity. In general, the faithful G × H -Hilbert representations of a locally com-
pact relativity G/H, infinite for noncompact G, can be induced by representations
of the “idolized” subgroup H .

5.1. Induced Representations

Induced representations are G × H -subrepresentations of the two-sided reg-

ular G × G-representation. They are the extension of the left G-action gH
kL�−→

kgH on the right H -cosets in the form of linear transformations.
The vector spaces for subgroup H -induced G-representations consist of H -

intertwiners on the group w : G −→ W with values in a Hilbert space with a
unitary action of the “idolized” subgroup d : H −→ U(W ). The G-action on
the intertwiners is defined by left multiplication kL, all this is expressed in the
commutative diagram:

kL × Rh
G −→ G

w

⏐

⏐

$

⏐

⏐

$kw

W −→ W
d(h)

,

g, k ∈ G, h ∈ H : kL × Rh(g) = kgh−1,

H -intertwiner: w(gh−1) = d(h).w(g),
G-action: w �−→ kw,

kw(g) = w(k−1g).

An H -intertwiner on the group w ∈ WG/H maps H -cosets of the group into
H -orbits in the Hilbert space W . It is defined by its values on representatives
gr ∈ (G/H )r ⊆ G. The G-action comes with the representative dependent H -
action (“gauge group action”) of the related Wigner element h(gr, k) ∈ H ,

kL(G/H )r −→ (G/H )r
w

⏐

⏐

$

⏐

⏐

$ kw

W −→ W

,
G × W (G/H )r −→ W (G/H )r ,

k−1w(gr ) = w(kgr ) = d(h−1(gr, k)).w((kg)r ).

The induced representation may be reducible. Since the fixgroups for the left
G-action on the right H -cosets are conjugates of H ,

GgH = {k ∈ G
⎪
⎪
⎪
⎪kgH = gH } = gHg−1 ∼= H,
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each G-representation on W (G/H )r and its subspaces contains the inducing H -re-
presentation d.

With a G-left invariant coset measure dgr = dkgr , the intertwiners, in a
bra vector notation, have a direct integral expansion with the cosets as natural
distributive basis 〈gr, a| and complex coefficients w(gr )a ∈ C

〈w| =⊕
∫

(G/H )r

dgr w(gr )a〈gr, a| ∈ W (G/H )r .

The G-invariant Hilbert product integrates the Hilbert product of the value
space W over the cosets

W (G/H )r × W (G/H )r −→ C, ‖ w ‖2=
∫

(G/H )r

dgr w(gr )aw(gr )a,

An orthonormal distributive basis is defined with a Dirac distribution
δ(gr, g

′
r ), supported by the relativity manifold and normalized with respect to

the invariant measure used dgr (examples below)

〈g′
r , a

′|gr, a〉 = δaa′δ(gr, g
′
r )

with 〈w|gr, a〉 =
∫

(G/H )r

dg′
r δ(gr, g

′
r )w(g′

r )a = w(gr )a.

In the simplest case, the functions on the homogeneous G-space for H -
relativity, valued in the complex numbers as 1-dimensional space W = C〈1| with
trivial H -action d0(h) = 1, are expanded as direct integral over the cosets with the
corresponding function values

〈f | : (G/H )r −→ C, 〈f | =⊕
∫

(G/H )r

dgr f (gr )〈gr |.

They are matrix elements (coefficients) of G-representations D which contain
a trivial H -representation D ⊇ d0.

5.2. Transmutators as Induced Representations

The transmutators above, valued in finite-dimensional rectangular matrices,
are acted on with G × H -representations, a G-action from left, induced by an
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H -action from right

kL(G/H )r −→ (G/H )r
Dι

⏐

⏐

$

⏐

⏐

$ kDι

VD ⊗ V T
ι −→ VD ⊗ V T

ι

, k−1Dι(gr ) = Dι(kgr ) = D(k) ◦ Dι(gr )
= D((kg)r ) ◦ dι(h(k, gr )),

Transmutators can be used for a decomposition of any G-representation
induced by a H -representation dι on a vector space with basis 〈ι; a| ∈ V T

ι ,

wι : (G/H )r �−→ V T
ι , 〈wι| =⊕

∫

(G/H )r

dgr wι(gr )a〈ι; gr, a|.

There occur all G-representations D, which contain the inducing H -repre-
sentation dι. With a basis |D; j 〉 ∈ VD one obtains the harmonic D-components
w̃ι(D)j , which come with multiplicity nD ,

〈wfinite
ι | =

⊕

D⊇dι

nDw̃ι(D)j 〈Dj
ι | with

{ 〈Dj
ι | =⊕∫

(G/H )r
dgr Dι(gr )ja〈ι; gr, a|,

w̃ι(D)j = 〈wι|D; j 〉,

wfinite
ι (gr )a =

⊕

D⊇dι

nDw̃ι(D)jD(gr )ja, wfinite
ι (kgr )a =

⊕

D⊇dι

nDw̃ι(D)jD(k)jkD(gr )ka,

e.g., the harmonic analysis of functions with the harmonic D-components f̃ (D)j ,

〈f finite| =
⊕

D⊇d0

nDf̃ (D)j 〈Dj

0 | with

{

〈Dj

0 | =⊕∫
(G/H )r

dgr D(gr )j0〈gr |,
f̃ (D)j = 〈f |D; j 〉.

5.3. The Hilbert Spaces of Compact Relativities

For a compact “general” group G, the finite-dimensional rectangular trans-
mutators are square integrable on the manifolds G/H. They are complete for the
harmonic analysis of the group G and its homogeneous spaces G/H, i.e., they ex-
haust by orthogonal direct Peter-Weyl decompositions with Schur orthogonality
all square integrable induced representations,

compact G :

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

〈wι| = 〈wfinite
ι |,

L2(G/H,V T
ι ) ∼=

⊕

D⊇dι

nD VD ⊗ V T
ι (dense),

id(V T
ι )G/H =

⊕

D⊇dι

nD idVD
∼=

⊕

D⊇dι

nD |D; j 〉〈D; j |.
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There is Frobenius’ reciprocity theorem for the number nD of dι-induced
G-representations D.

As discussed above, all representation matrix elements of the compact groups
U(2) and SU(2) are square integrable with the finitely decomposable Hilbert spaces
for electromagnetic relativity L2(G3, Vz) and perpendicular relativity L2(�2, V|z|).

The complex functions for perpendicular relativity are the spherical harmon-

ics4 as products of the three matrix elements �ω �−→
√

4π
3 Y1( �ω)a ∈ C in the middle

column with trivial representations of SO(2) � eiχ and a triplet representation of
SO(3),

⎛

⎜

⎝

ei(χ+ϕ) cos2 θ
2 ieiϕ sin θ√

2
−e−i(χ−ϕ) sin2 θ

2

ieiχ sin θ√
2

cos θ ie−iχ sin θ√
2

−ei(χ−ϕ) sin2 θ
2 ie−iϕ sin θ√

2
e−i(χ+ϕ) cos2 θ

2

⎞

⎟

⎠ ∈ SO(3),

SU(2)/SO(2) ∼= �2 � �x
r

= �ω �−→ [2J ]( �ω)a0 =
√

4π

1 + 2J
YJ ( �ω)a ∈ C

for J = 0, 1, 2, . . . with a ∈ {−J, . . . , +J },
O ∈ SO(3) : [2J ](O)abYJ ( �ω)b = YJ (O. �ω)a.

There is Schur’s orthogonality Schur (1905); Folland (1995); Knapp (1986)
with the Plancherel normalization given by the dimension 1 + 2J of the represen-
tation space,

∫

�2

d2ω

4π
[2J ]( �ω)a0 [2J ′]( �ω)a

′
0 =

∫

�2
d2ω

YJ ( �ω)a√
1 + 2J

YJ ′ ( �ω)a
′

√
1 + 2J ′ = 1

1 + 2J
δJJ ′δaa′

.

It involves the rotation invariant normalizable measure and the distributive
basis of the 2-sphere,

∫

�2
d2ω =

∫ 2π

0
dϕ

∫ 1

−1
d cos θ = 4π,

〈 �ω′| �ω〉 = δ( �ω − �ω′) = δ(ϕ − ϕ′)
1

sin θ
δ(θ − θ ′).

4 In the Euler angle parametrization, both the middle column and the middle row define the SO(3)-action
on the 2-sphere �2 ∼= SO(3)/SO(2) ∼= SO(2)\SO(3). The central element θ �−→ cos θ parametri-
zes the double coset space, the 1-sphere �1 ∼= SO(2)\SO(3)/SO(2) ∼= SO(2) and is a spherical
�2-function.
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The spherical harmonics exhaust the square integrable 2-sphere functions,

L2(�2) � 〈f | =⊕
∫

�2
d2ωf ( �ω)〈 �ω| =

∞
⊕

J=0

f̃ (J )a
⊕
∫

�2
d2ω YJ ( �ω)a〈 �ω|,

f ( �ω) =
∞
⊕

J=0

f̃ (J )a YJ ( �ω)a.

The measure can be rewritten with a 2-sphere-supported Dirac distribution

r〈[2J ]a0| ∼⊕
∫

�2
d2ω YJ ( �ω)〈 �ω| =⊕

∫

d3x δ(�x2 − 1)(�x)Jtraceless〈�x|,

with

( �x
|�x|

)J

traceless

= [2J ]( �ω).

5.4. Finite-dimensional Analysis of Special Relativity

The harmonic analysis of free quantum fields with respect to the eigenvectors
for spacetime translations and spin rotations uses non-Hilbert representations of
the Lorentz group.

Induced representations of a noncompact group also contain finite-dimen-
sional rectangular transmutators. For example, the three matrix elements in the
middle column with trivial representations of SO(2) � eiχ ,

⎛

⎜

⎝

ei(χ+ϕ) cosh2 β eiϕ sinh 2β√
2

−e−i(χ−ϕ) sinh2 β

eiχ sinh 2β√
2

cosh 2β e−iχ sinh 2β√
2

−ei(χ−ϕ) sinh2 β e−iϕ sinh 2β√
2

e−i(χ+ϕ) cosh2 β

⎞

⎟

⎠ ∈ SO0(1, 2),

are complex functions on the 2-hyperboloid SO0(1, 2)/SO(2) ∼= Y2 −→ C with
a triplet representation of SO0(1, 2). However, there are no finite-dimensional
faithful Hilbert representations of noncompact Lie groups.

Relativistic quantum fields for massive particles involve rectangular transmu-
tators acted on with SL(C2) × SU(2)-representations. For example, the represen-
tation � = [1|1] of the Lorentz group in the SO0(1, 3) × SO(3)-representation
on C

4 ⊗ V T
ι for a special relativistic vector field and the tensor representation

� ∧ � = [2|0] ⊕ [0|2] on C
6 ⊗ V T

ι for its field strength,

Z(0)j =⊕
∫

Y3

d3q

2q0
�
( q

m

)j

a
[u(�q)a + u	(�q)a],

iF(0)kj =⊕
∫

Y3

d3q

2q0
�
( q

m

)l

0
ε

kj

lr �
( q

m

)r

a
[u(�q)a − u	(�q)a]

with q0 =
√

m2 + �q2, ε
kj

lr = δk
l δ

j
r − δk

r δ
j

l , a = 1, 2, 3, j = 0, 1, 2, 3,
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are both induced by an SO(3)-representation (Folland, 1995) on Vι
∼= C

3 and its
dual V T

ι . These spin representations act on the creation and annihilation operators
u(�q)a, u	(�q)a for a massive particle with momentum �q and spin 1 directions
a = 1, 2, 3. The action of the creation operators on the Fock ground state |0〉
gives dual distributive bases of the special relativistic manifold, i.e., of the energy-
momentum hyperboloid Y3 ∼= SO0(1, 3)/SO(3) for mass m2. The distributive
orthogonality is given by the Fock expectation value 〈 〉,

|1; �q, a〉 = u(�q)a|0〉 ∈ Vι(�q), 〈1; �q, a| = 〈0|u	(�q)a ∈ V T
ι (�q),

〈1; �p, b|1; �q, a〉 = 〈u	( �p)bu(�q)a〉 = δab2
√

m2 + �q2δ(�q − �p).

The 4- and 6-dimensional Lorentz group representations do not act on Hilbert
spaces. That can be seen at the transmutators from Lorentz group to rotation group,
e.g., { �q

m
�−→ �( q

m
)ja}, which are not square integrable L2(Y3) on the energy-

momentum hyperboloid.
The Lorentz invariant nonnormalizable measure of the 3-hyberboloid in the

momentum parametrization cabn be written as integral with a Y3-supported Dirac
distribution,

∫

Y3

d3q

2
√

m2 + �q2
= ∫

d4q ϑ(q0)δ(q2 − m2).

The finite-dimensional Lorentz group SL(C2)-representations that contain a
trivial rotation group SU(2)-representation are [n|n]. They act on vector spaces
C

(1+n)(1+n), n = 0, 1, . . . , with the spin-representation decomposition:

irrep finiteSO0(1, 3) � [n|n]
SO(3)∼=

n
⊕

J=0

[2J ] e.g.,

⎧

⎪
⎨

⎪
⎩

[0|0] ∼= [0],

[1|1] ∼= [0] ⊕ [2],

[2|2] ∼= [0] ⊕ [2] ⊕ [4].

They are used for finite-dimensional SO0(1, 3)-representation expansion of com-
plex functions on energy-momentum hyperboloids

〈[n|n]j1...jn

0 | : Y3 −→ C for n = 0, 1, 2, . . .

〈[n|n]j1...jn

0 | =⊕
∫

Y3

d3q

2q0
[n|n]j1...jn

0 (�q)〈�q| with q0 =
√

m2 + �q2

=⊕
∫

d4q ϑ(q0)δ(q2 − m2)[n|n]j1...jn

0 (q)〈q|

and arise as contributions of the Feynman propagators for trivial translations, e.g.,
for a spin 0 particle in a scalar field , a spin 1

2 -particle in a Dirac field ���, and a
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spin 1 particle in a vector field Z:

(0) : 〈[0|0]| =⊕
∫

d4q ϑ(q0)δ(q2 − m2)〈q|,

���(0) : 〈[0|0]| ⊕ γj 〈[1|1]j0| =⊕
∫

d4q ϑ(q0)δ(q2 − m2)

(

14 + γjq
j

m

)

〈q|,

Zj (0) : 〈[2|2]jk

0 | =⊕
∫

d4q ϑ(q0)δ(q2 − m2)

(

−ηkj + qkqj

m2

)

〈q|.

The spacetime translation dependent fields, e.g., a massive vector field,

R
4 � x �−→ Z(x)j , F(x)kj = ε

kj

lr

∂l

m
Z(x)r

involve eiqxu(�q)a and e−iqxu	(�q)a , which are the translation orbits R
4 � x �−→

e±iqx ∈ U(1) for a representation of the Poincaré group SO0(1, 3) �× R
4. This

leads to the spacetime translation representation coefficients with 〈q|x〉 = eiqx

and 〈x|q〉 = e−iqx as the on-shell part of the Feynman propagator,

〈[2|2]jk

0 |x〉+〈

x[2|2]jk

0

〉 =
∫

d4q δ(q2− m2)

(

−ηkj + qkqj

m2

)

eiqx

= 〈{Zk(y), Zj (x)}〉.
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